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EXECUTIVE SUMMARY

This interim report continues with the research effort on advanced adaptive controls for

space robotic systems. In particular, previous results developed by the principle investigator and

his research team centered around fuzzy logic control (FLC) in which the lack of knowledge of

the robotic system as well as the uncertainties of the environment are compensated for by a rule

base structure which interacts with varying degrees of belief of control action using system

measurements. An on-line adaptive algorithm was developed using a single parameter tuning

scheme. In the effort presented in this report, the methodology is further developed to include

on-line scaling factor tuning and self-learning control as well as extended to the multi-input,

multi-output (MIMO) case. Classical fuzzy logic control requires tuning input scale factors oft'-

line through trial and error techniques. This is time-consuming and can not adapt to new cha_ges

in the process. The new adaptive FLC includes a self-tuning scheme for choosing the scaling

factors on-line. Further the rule base in classical FLC is usually produced by soliciting

knowledge from human operators as to what is good control action for given circumstances.

This usually requires full knowledge and experience of the process and operating conditions,

which limits applicability. A self-learning scheme is developed which adaptively forms the rule

base with very limited knowledge of the process. Finally, a MIMO method is presented

employing optimization techniques. This is required for application to space robotics in which

several degrees-of-freedom links are commonly used. Simulation examples are presented for

terminal control - typical of robotic problems in which a desired terminal point is to be reached

for each link. Future activities will be to implement the MIMO adaptive FLC on an INTEL

microcontroller-based circuit and to test the algorithm on a robotic system at the Mars Mission

Research Center at North Carolina State University.
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1. Introduction

A brief summary of the classical fuzzy logic control structure is presented here for

completeness.

The structure of a fuzzy logic controller is shown in Figure 1. It is composed of fuzzifier,

rule base, and defuzzifier. The computation of the control action consists of the following stages:

I) Compute current error(E) and its rate of change(CE).

2) Convert numerical E and CE into fuzzy E and CE.

3) Evaluate the control rules using the fuzzy logic operations.

4) Compute the deterministic input required to control the process.

The fuzzifier includes scaling part and membership function part as shown in Figure 2.

H H HFu_fier Rule Base Defuzzifler Process

Figure 1: Structure of a classical fuzzy logic controller
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The scaling factors can be nonlinear, also the membership functions can have other shapes, like

bell, trapezoidal, sinusoidal shapes and etc. The fuzzifier converts numerical E and CE, such as

100.01, -0.93, etc., into fuzzy E and CE, such as SN (small negative), ZE (zero), MP (medium

positive), etc., with grades of membership It(E) and I.t(CE) from 0 to 1.
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The rule base contains the control rules which are if...then.., statements. Figure 3 gives

the structure. These rules are evaluated to determined the fuzzy process control input. The

control rules can also be represented in the three dimensional space.

Fur'_y E
......-

FurT..y CE .._

1) If E is LP, and CE is LP,

then Ctrl is LN.

2) If E Is LP, and CE Is SP,

then Ctrl is MN.

bt (A .or. B)--Max ( bt (A), _t (1]))

I_ (A .and. B)=Min(la (A), I_ (B))

ta ( .not. A)=I. I_ (A)

F_zzzy Process -.-
r

Control Input

Figure 3: Structure of the rulebase

The control rules can also represented as a surface in the three dimensional space shown

in Figure 4.

The defuzzifier is the inverse of the fuzzifier. It converts fuzzy process control inputs

obtained through rule evaluation into numerical deterministic process control inputs. Many

algorithms can be used here; the center of gravity method is the most popular one.

Rule Surfaae

3-

/

c,__,

- 0 E

-3

3

3

Figure 4: Control rule surface with (-3:LN) (-2:MN) (-I:SN) (0:ZE) (I:SP) (2:MP) (3:LP)
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Figure 5: Structure of the defuzzifier
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2. The Self-Tuning Scheme

From the structure of a fuzzy logic, one can f'md that the scaling factors of fuzzifier affect

the performance of the controller to a large extent. In general, if the scaling factors are too small,

the control response would be slow. If the scaling factors are too large, the control response

would have large overshoot. There are two common ways to decide the scaling factors, both by

trial and error:

1) Compare ideal step response with actual step response, adjust the scaling factors till

the ideal step response and the actual response are almost identical. This is done off-line after

each simulation or experiment. It takes a lot of time.

2) Check the error phase portraying factors till the portrait smoothly and quickly

converges to zero. This is also done off-line.

Here, a self-tuning scaling scheme is given based on error phase portrait. With this

scheme, the tedious off-line scaling adjustments can be avoided and since the self-tuning scheme

is on-line, it can adapt to the new changes of the process.

The general idea behind the scheme is to adjust the scaling factors so that the augmented

error which is the weighted distance in the error phase portrait decreases.

The scheme can be illustrated through Figure 6. The variables t n and tn+ 1 are sampling

times, L n and Ln÷ 1 are weighed distances to the origin (or weighted augmented errors),

Li = _WeE_2 + wceCE 2

Further w e and Wce are the weights.
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Figure 6: Phase portrait

Then

Else
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The algorithm for the error is

If

Ln+ 1 > 5L n and [En+l[ > 51Enl

E = KnE_ sign(EnKn+l 2 x (IEn+ll- IEn[ ) x KnE_x En+l) x X x min 1 )' LU D E

E
Kn+ 1 = K_

The algorithm for the rate of error change is

If

Ln+ 1 >_SL n and ICEn+I I >SICEn[

KCE CEn+l = Kn - sign (CE n x CEn+I) x X x min (1,

2 x (ICEn+I 1- ICEnl ) × K CE)

J



Else
CE CE

Kn+ 1 = K n

where

K E is the scaling factor for the error at time ti.

KiCE is the scaling factor for the rate of error change at time ti.

LU D E is the length of universe of discourse for the error.

LU D EE is the length of universe of discourse for the rate of error change.

and _, are convergence coefficients and 1 > 5, _. > 0.

The sign(x) function is defined as

I 1 if x>0
sign(x)= 0 if x=0

-1 if x<0

Simulation results for a low-order linear but unknown system are compared with self-

tuning and without self-tuning in Figure 7 and Figure 8.

3. Self-Learning Scheme

The control rules of a classical fuzzy logic controller are developed based on the

experience and knowledge of an operator. These rules are unchanged during the process. But in

some cases, full knowledge of the process is not available. Even with enough knowledge of the

process, one still hopes that the controller can adapt itself to new operating conditions; so a

controller with learning ability would be desirable.

A self-learning fuzzy logic controller consists of two parts, (Figure 9): one is the

identification part which develops the control rules based on the control performance; the other

part is control part which computes the control input for the process.

A control rule can be written as

If X i , And yi, Then Z i
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Figure 9: Structure of a self-learning fuzzy logic controller
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or

X i n yi _ Z i

X i and yi are facts, Z i is the conclusion which needs to be identified. The overall control

rules used at certain sampling time is

y (X i c3 yi) _ Z
1

The Z here is time varying.

Define control performance index ® as

® = f(p, E, CE)

where p is learning convergence coefficient.

The learning scheme is

Zn+ 1 = (Z n xD) _ {® ® .u (X i _ yi)}
i

where D is a forgetting factor.

So the control rules become

_(X i _ yi) _ Zn _ v(X i n yi) _ Zn+l
1 1

In order to illustrate the scalar adaptive FLC method, a simple low-order system with

unknown parameters is to be controlled. As is typical with robotic systems, a desired terminal

point is to be achieved. Figures 10-21 illustrate the iteration (learning) process. In particular,

Figure 10 shows the initial control surface (essentially flat with no information) while Figure 11
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showswhattheprojectedresultswouldbewith thedesiredresponsealsoshown. As theiteration

progresseswith the appliedcontrolat eachsample,thecontrolsurfaceimprovesresultingin the

tenthrun (Figures18and19)wherethedesiredresponseis achieved.Thefifteenthrunvalidates

that this is thepreferredcontrolstrategyandthatthefuzzy controlleradaptsandlearnsaboutthe

systemasit controls. Hencethecontrollerworksquite well in this example. Theapproachhas

alsobeenappliedto otherprocesseswith similarpromisingresults.
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The initial control rule surface with (-3:LN) (-2:MN) (-I:SN) (0:ZE) (I:SP) (2:MP)
(3:LP)



Figure 11"
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(3:LP)



O

o

i r I I !

=

L°

-i

' ' ' go ; '20 40 Ioo

T_mo

II

Figure 13: Process response of the first run (solid line • desired response) (dashed line • actual
response) (dashed-point line • control)
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The second control rule surface with (-3:LN) (-2:MN) (-I:SN) (0:ZE) (I:SP) (2:MP)

(3:LP)
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The third control rule surface with (-3:LN) (-2:MN) (-I:SN) (0:ZE) (I:SP) (2:MP)
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Figure 18: The tenth control rule surface with (-3:LN) (-2:MN) (-I:SN) (0:ZE) (I:SP) (2:MP)
(3:LP)
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Figure 21: Process response of the fifteenth run (solid line • desired response) (dashed line •
actual response) (dashed-point line • control)

4. The Mtaltivariable Fuzzy Logi.c. Control Algorithm

In order to extend the self-learning method of Section 3 to the multi-input, multi-output

case, we consider the unknown system to be such that there are n inputs and m outputs,

designated by I i and Oj, respectively. A mapping between each input and output pair is

established using the fuzzy logic rules discussed in Section 3. Hence n x m rulebases are built.

Denote the control rulebase between the ith input and jth output by Rij. Further denote the

difference between the ith actual output and the ith desired output by et and the change of the

difference between the ith actual output and the ith desired output by Ae i. The control rulebase

matrix and error/error rate matrix form a pair which when operated on by the fuzzy control

process produces a matrix of the control effort as designated by:

IR._ "" R.mJ e Ae mj LUnl

where uij is the control effort for the (i,j) pair.



To formulatetheoptimalfuzzylogic controllerfor themultivariablesystem,one

minimizestheperformancemeasure:

J=FTpF+ITQI
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subjectto L < I < H, where L

weightingmatrices,andwhere

and H areconstraintson thecontrolinputs, PandQ are

If!] 1(" 1F_= fj= e_+Ae_ "Z li/uij j = 1.....m

f i=l

The performance measure can be minimized numerically using classical gradient

methods, resulting in the control inputs for the next iteration. One notes from the performance

measure constructed that, when there is no control rulebase (i.e., no rule is applicable for a

particular input-output pair), Uij---)'_. Hence output j has no effect on input i in the function _.

This completes the multivariable fuzzy logic control algorithm.

In order to test the fuzzy logic control, a simple low order linear but unknown system

with two inputs and three outputs is investigated.

Applying the multivariate FLC yields the results as shown in Figure 22. Here each

output achieves its desired terminal value within two units. Figure 23 shows the individual

outputs along with the desired terminal values.
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Figure 23: Process response with (solid line • actual output) (dashed line • desired output)
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The FLC for the two control inputs is shown in Figures 24 and 25. Physical constraints

were placed on both controllers.
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Figure 24: Control one
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Control two with (solid line • output one) (dashed line • output two) (dashed-

point line • output three)
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To seetheeffectsof weighingon theimportanceof controleffort, thematricesP and Q

werechanged.Resultsareshownin Figures26-29. AgaintheFLC producedthedesired

terminalvalues.
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5. Summary.
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Firstly, two schemes are developed here - the self-tuning method for choosing the scaling

factors and the self-learning method for rule base developement which have enhanced the

flexibility of fuzzy logic controllers. Then the method is extended to the MIMO case. These

schemes can be further modified. For example, if we assume the control surface is smooth,

which is similar to assume the human operator's decisions are rational, we can average the

control surface after each simulation or experiment. It is expected that this approach would give

quicker overall control rule convergence. This is an area of further research.
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